Provable equivalence

Let φ and ψ be formulas of propositional logic. We say that φ and ψ are provably equivalent iff (we write 'iff' for 'if, and only if' in the sequel) the sequents $\varphi \psi$ and $\psi \varphi$ are valid; that is, there is a proof of ψ from φ and another one going the other way around. As seen earlier, we denote that φ and ψ are provably equivalent by $\varphi \psi$.

Note that, by Remark 1.12, we could just as well have defined $\phi \ \psi$ to mean that the sequent $(\phi \rightarrow \psi) \land (\psi \rightarrow \phi)$ is valid; it defines the same concept.

Examples of provably equivalent formulas are

$\neg(p \land q) \neg q \lor$	$\neg p \neg (p \lor q) \neg q \land \neg p$
$p \to q \ \neg q \to \neg p$	$p \to q \ \neg p \lor q$
$p \land q \to p \ r \lor \neg r$	$p \land q \rightarrow r \ p \rightarrow (q \rightarrow r).$

The reader should prove all of these six equivalences in natural deduction.